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Monte Carlo Simulations of Conformal Theory 
Predictions for the Three-State Potts Model 
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The critical properties of the three-state Potts model are investigated using 
Monte Carlo simulations. Special interest is given to the measurement of 
three-point correlation functions and associated universal objects, i.e., structure 
constants. The results agree well with predictions coining from conformal field 
theory, confirming, for this example, the correctness of the Coulomb gas 
formalism and the bootstrap method. 
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1. I N T R O D U C T I O N  

Conformal  field theory  I~ has p r o d u c e d  many  precise pred ic t ions  for two- 
d imens iona l  (2D)  equi l ib r ium cri t ical  systems. They  fall into two large 
classes: cri t ical  exponents  ~2~ and  o p e r a t o r - p r o d u c t  s t ructure  constants ,  t3~ 
Theore t ica l  ca lcula t ions  of  these quant i t ies  are based on very special 
proper t ies  of  the represen ta t ions  of  the conformal  g roup  that  are  bel ieved 
to be re levant  to 2D cri t ical  s tat is t ical  systems (see ref. 4 for review) 
- - d e g e n e r a t e  Verma modules  ~s~ and m o d u l a r  invariance.  16) F o r  many  
models,  these proper t ies  have led to  the only avai lable  theoret ica l  calcula-  
t ions of  the st.ructure constants .  

F u r t h e r  efforts to measure  the s t ructure  cons tan t s  are just i f ied on two 
grounds.  Firs t ,  they define the sca t ter ing  ampl i tudes  of  2D conformal  field 
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theories. Second, the conformal calculation of the structure constants 
exploits indirect techniques of constructing correlation functions--the 
bootstrap equation ~5~ and the Coulomb gas formalism, t3~ These methods 
were not involved in conformal predictions of critical exponents and fusion 
rules. Their use requires new assumptions--that  the Coulomb gas for- 
malism gives a complete basis of conformal blocks and that nontrivial 
analytic continuations in the variables defining the blocks are unique. 
While there is widespread belief that these assumptions are correct, they 
merit experimental tests. 

Though many structure constants have been theoretically calculated, ~31 
few have been measured. Finite-size effects on the spectrum of 1D spin 
chains are determined by them. These effects have been used to find the 
ratio of two structure constants and to verify two fusion rules in the three- 
state Potts modelJ 71 Further studies of finite-size effects could enable the 
measurement of all structure constants/7) 

Experiments to determine the structure constants are difficult and do 
not presently exist. They require measuring both two-point and three-point 
correlation functions at the critical point. Such measurements are much 
simpler in Monte Carlo simulations. The purpose of this article is to report 
on Monte Carlo experiments for the three-state Potts model. The results 
will give measured values for structure constants that will be compared to 
predictions of conformal field theory 19> (also see last Appendix of ref. 4 and, 
for a review, ref. 8). They will provide us with both an "experimental" test 
of conformal field theory and an insight into the methods necessary to 
"directly" measure the new "universal" quantities that it predicts in 2D 
critical systems. 

We will briefly summarize some facts about the Potts models that will 
be important to our analysis. A review of the statistical properties of these 
models can be found in refs. 10-12. Their identifications with conformal 
field theories are discussed in refs. 4, 5, 8, and 9. Since the theoretical tools 
necessary to perform the simulations are minimal, we refer to refs. 5 and 9 
for explanations of the theoretical calculation of structure constants. 

Our simulations will be for models on square lattices with periodic 
boundary conditions generated by two primitive vectors n. The 
Hamiltonian of these models has the following form: 

H=  ~ E(x )=( -J ) /2  ~,, [S(x+n)+S(x-n)]  S*(x) 
x x , n  

(1) 

where x is a vector on the lattice. The spin density S(x) and the energy 
density E(x) are operators that describe the coupling of the physical system 
to magnetic and temperature perturbations, respectively. They are 
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fundamental conformal operators (primary fields) having simple local 
definitions on the lattice. The field S(x) takes the discrete values ___ 1 for 
the Ising model (two-state Potts) and 1, exp(2rci/3), and exp(-2~i /3)  for 
the three-state Ports model. The energy density operator is defined locally 
by the value of S(x) on five neighboring lattice sites, i.e., 

E(x) = - J  Y' �89 [ S(x + n) + S(x - n)] S*(x) 
x 

(2) 

Both of these operators exhibit scaling behavior at the critical point. 
Traditionally, the Hamiltonian for the Potts model is written in a 

slightly different form, i.e., 

H =  - J  ~ 3(S(x), S(x + n)) (3) 
x,  n 

The Hamiltonians (1) and (3) of the three-state model are equivalent, up 
to an overall additive constant of -J/2 per bond and a scaling factor of 
2/3: a pair of aligned neighboring spins contributes 1 to the summation in 
both cases, but a pair of nonaligned neighboring spins contributes - I/2 in 
(1) and 0 in (3). 

The scaling behavior of two-point correlations at a critical point 
defines the conformal dimensional Aj of a scaling field ~b~(x). For spinless 
fields like S(x) and E(x), it is given by 

6uN~ 2 

<~, (x )  ~bT(0)> - ix l~ ,  (4) 

True scaling fields (thus also conformal primary fields) have vanishing 
statistical averages at a critical point, 151 e.g., (~i(x)> =0.  To obtain such 
fields, one must subtract the thermal averages from lattice fields with non- 
zero averages, like E(x). Only the subtracted operators obey the scaling 
law of (4). The subtraction constants are not universal and are not 
described by conformal theory. This subtraction procedure must be 
explicitly done in any simulation. 

Finally, we mention that (4) and all other equations for critical 
correlation furrctions manifestly respect the discrete symmetries o f ( l ) .  The 
spin field S(x) transforms under the discrete symmetry Z3 for the three- 
state Potts model. Its correlation functions will obey superselection rules, 
at the critical point, associated with these symmetries. 

The conformal dimensions of S(x) and E(x) have been known for the 
Potts models for some time. (4'5'9'1~ Their explicit values are given in 
Table I. 

822/84/5-6-13 
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Table I. Scaling Dimensions of the Spin and Energy 
Density Fields in the Three-State Potts Model 

Field Scaling dimension 

S(x) 1/15 
E(x) 2/5 

Our main interest concerns the predictions from conformal field theory 
for the three-point correlation functions. It is well known that the three- 
point correlations of conformally invariant theories have the following 
special form: I'1 

Cijl'N~N-iNk (5) 
(~;(x;)  ~j(xj) ~k(x~)) = ix0.12~,+ 2~__,~k • cyclic perms. 

The quantities Cuk are the structure constants. Much of the revival of 
interest in conformal theories during the 1980s was associated with the 
realization that, in 2D, the Cu~ were new universal quantities different from 
critical exponents. More importantly, they were shown to be calculable 
from symmetry considerations alone. ~5~ The Ng define the normalizations of 
the two-point functions. They are not universal and must be measured in 
our simulations of two-point correlations before extracting the universal 
constants Cuk from (5). 

The calculation of the structure constants has been achieved for a 
large variety of minimal conformal models by using their special mathe- 
matical properties--the existence of null vectors, t3"5~ These models are 
believed to describe the critical behavior of many of the important statisti- 
cal systems. The critical point of the Ising model has been identified with 
the A 3 conformal minimal model. 15~ The critical point of the three-state 
Potts model has been identified with a Z 3 symmetric version of the D5 con- 
formal minimal model, t4'91 The values of the structure constants resulting 
from theoretical calculations based on these identifications are summarized 
in Table II; the detailed calculations are found in refs. 8 and 9. 

Table II. Predicted Structure Constants of the 
Three-State Potts Model 

Structure constant Value 

C ses, 0.546 
Csss (= Cs,s,s,) 1.092 
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The structure constants not shown in Table II vanish due to the dis- 
crete symmetries. The vanishing of Ceee results from a fusion rule 
(4521 x ~2~ = 1). Its discovery stimulated the revival of interest in 2D con- 
formal symmetry ~5! in 1984. This particular fusion rule is also related to the 
duality symmetry of the critical point, i.e., the dual transformation on E is 
E ~ - E .  The fusion rules are fundamental predictions of conformal field 
theory. Nevertheless, they only state when structure constants are nonzero. 
The actual values for nonzero Cok of Table II have been calculated by 
using two other tools of 2D conformal theory-- the  screened Coulomb gas 
formalism 13~ and the so-called "bootstrap" equations. 151 The values of the 
nonzero Cijk are a second fundamental prediction of conformal field theory. 
Experimental confirmation of their explicit values supports the validity of 
these latter two tools of 2D conformal theory. 

While the structure constants of the Ising model were known before 
the arrival of conformal field theories] TM those for the three-state Potts 
model have not been found by other methods, c91 Thus, the latter model 
allows a real test of the methods of conformal field theory. 

2. ANALYSIS  

Our simulations utilize the following procedure. First, the infinite- 
lattice critical temperature is found from duality considerations T,. = To. 
Next, the exact value of T,. for our finite lattice is determined by calculating 
the two-point correlations of S(x) near TD: below T,., the correlations 
approach a constant value at large distances; above T,., the correlations fall 
off exponentially; and exactly at T,. the correlations show power-law 
scaling behavior. After constructing the two-point correlation of S(x) at 
T,., we can measure the scaling dimension of S(x) and the normalization 
constant Ns in (4). Next, the thermal average of E(x), ( E ) ,  is measured at 
the critical temperature. Then, the critical two-point correlation of E(x) is 
simulated. The nonscaling contribution ( E ) 2  is subtracted, and the scaling 
dimension of E(x) and NE are determined. Finally, the three-point correla- 
tions are simulated. The scaling exponents can be extracted. The structure 
constants are found with the help of (5) and the values of Ns and NE. The 
last step is to compare our "simulated" scaling dimensions and structure 
constants with the conformal field theory predictions of Tables I and II. 

The Monte Carlo methods for the three-state Potts model were carried 
out on a 500 • 500 lattice with periodic boundary conditions. The algo- 
rithm used to generate sample configurations is a cluster algorithm, as out- 
lined by Wolff .  ~]4) In one such cluster move, the time scale was incremented 
by the fraction of spins included in the cluster. In the work presented here, 
this time scale is only relevant for defining the thermalization time and time 
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between samples. In our Potts simulations, we thermalized over 300 such 
time units and took 21,000 samples separated by 20 time units. To obtain 
statistical error bars, these samples were blocked in groups of 150 samples, 
and their standard deviation was obtained. 

By finding the temperature at which the two-spin correlation 
(S(x) S*(0)) shows power-law scaling, we found that, for our system size, 
Tc/Tn= 1.0005_+0.0003. All data reported for the Potts model are 
obtained with this lattice size and at the above value of T c. 

Figure 1 shows the two-point correlations for the Potts model. The 
vacuum expectation value (E)2  has already been subtracted in graphs of 
correlation functions of E(x). The simulations of the two-point functions 
give Ns=0.54_+0.03 and N~=  0.125 _+ 0.005 (Fig. l). The power-law 
dependence of these correlations gives an ~lss* = 0.26 + 0.02 in agreement 
with TableI, i.e., four times the dimension of the field ~lss=4/15. The 
measured value for J1EE is 1.66_+0.04. This disagrees slightly with the 
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Fig. I. Two-spin correlations (top) and energy density two-point correlations (bottom) in 
the three-states Ports model on a 500 x 500 lattices at T=  T,. The dashed lines are our fit to 
the power-law behavior, given by <SoS*>=kss.r-"SS', where kss.=0.54+_O.03 and 
~lss. =0.26_+0.02, and <EoEr> =kErr -'s~, where k~=0.125 _+0,005 and J/dE= 1.66_+ 0.04. 
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prediction of Table I (r/EE=8/5). These results are reasonable from the 
statistical nature of our errors. 

The three-point correlations were measured by placing one operator at 
0=(0 ,0 )  (the center of the lattice) and the other two at r~ =( r ,  0) and 
r2 = (0, r), i.e., two vectors along the two perpendicular lattice directions at 
a distance r. Figure 2 shows this correlation for the Potts model as a func- 
tion of r. Conformal field theory, Eq. (5) and Table I, predicts for the Potts 
model that 

and 

( SrtSoSr,). = 2-1/15 ~r31 " s ~sssr ."-2/5 

( St, Eo St*) = 2 4/1 5 N s N E  C s E s .  r - 16/i s 

(6) 

(7) 
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Fig. 2. Three-spin correlations (top) and mixed three-point correlations (bottom) in the 
Potts model on a 500 x 500 lattice at T =  To. The dashed lines are our fit to the power-law 
behavior, given by ( St, So St,) = ksssr -r where kss x = 0.44 + 0.04 and qsss = 0.39 + 0.02, 
and (Sr, EoS*) =ksEs.r -r where ks~ s. =0.14 +0.01 and qs~s. = 1.11 +0.04. 
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The measurements shown in Fig. 2 fit the form 

( S,., SoS~2 ) = ksssr -,isss 

with ksss = 0.44 _+ 0.04 and qsss = 0.39 + 0.02, and 

( S,., Eo S* ) = ksEs. r-'IsEs" 

with ksEs, = 0.14___0.01 and /ISES, = 1.11 _+ 0.04, respectively. The 
exponents agree with the theoretical values 2/5 and 16/15. Combining these 
results with (5) and the results for N E and N s, we obtain measured values 
for the two nonzero structure constants of the three-state Potts model, 
CsEs, = 0.61 _+ 0.06 and Csss = 1.16 -t- 0.14. The measured values compare 
quite well with the predictions of Table II. 

Finally, there are theoretical calculations of CsE s in the Ising model 
that do not rely on conformal theory/13~ The.measurement of this structure 
constant allows an independent test of the validity of our procedure. 
Employing the method used above, we found that CsEs = 0.54_ 0.05 for 
the Ising model. This result is in good agreement with the correct theo- 
retical value of 1/2. Iv" 131 

In summary, we have measured two- and three-point correlations for 
the two-dimensional three-state Potts model and have compared both their 
exponents and prefactors, i.e., structure constants, with predictions from 
conformal field theory. All measurements, except one, are within one 
standard deviation of theoretical predictions. The remaining one is within 
two standard deviations. This gives a test of the screened Coulomb gas and 
bootstrap equation formalisms that were used to obtain the theoretical 
values. 

Our Monte Carlo simulations strongly support the validity of the 
detailed conformal theory methods that have allowed the calculation of 
higher correlation functions at critical points. This work has extended the 
results of ref. 7, which measured a ratio of two structure constants for the 
three-state Potts model. 
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